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Introduction 

 
It would be helpful for bicycle designers, 

especially novices, to have a set of scientifically 
backed guidelines that could direct them in 
choosing appropriate geometrical parameters to 
obtain desired handling characteristics.  Several 
critical geometrical parameters of standard 
bicycles have been identified over time and their 
significance has normally been explained 
through experience and pseudoscientific 
methods.  Although many dynamic studies have 
been done in the realm of two-wheeled single-
track vehicles, easily interpreted, consistent, and 
somewhat complete layman’s guidelines haven’t 
seemed to emerge from these studies. 

The following analysis will attempt to 
extract some guidelines for choosing four 
important parameters in bicycle design.  A three-
degree of freedom idealized bicycle model will 
be developed and analyzed.  Two important 
eigenmodes will be determined from the 
linearized version of the model.  From these 
eigenmodes two critical velocities for stability 
will be determined for various geometric 
parameter changes.  An interpretation of these 
critical velocities will lead to a limited 
understanding of the handling qualities of 
various bicycle designs. 
 
Bicycle Parameters 
 

For this study a standard road bicycle will be 
used as a base bicycle model.  Figure 1 shows 
the basic shape of a diamond frame road bike 
with various important dimensions labeled. 

 

 
Figure 1: Basic bicycle dimensions 

 

The four parameters that are of particular 
interest are the front wheel size, the wheelbase, 
the head tube angle, and the trail.  Each of these 
parameters will be varied through a realistic 
range for the base bicycle model and the critical 
velocities extracted for each variation.  To do 
this a variable geometric model of the bicycle 
and rider was developed that calculated all of the 
required parameters for the dynamic model 
described in the following section. 

A bicycle and rider geometric model was 
constructed from a set of grid points and simple 
geometric shapes.  Figure 2 depicts the model.  
The bicycle frame is made of tubes, the wheels 
are tori, and the rider is a combination of 
rectangular prisms, cylinders, and a sphere.  The 
four rigid bodies that make up the dynamic 
model are shown each with different colors. 
 

 
A MATLAB program was developed that 

took the basic dimensions typically provided by 
a bicycle manufacturer along with the rider’s 
dimensions and generated all necessary 
geometric, mass, and inertial properties needed 
for the dynamic model.  The program is provided 
in Appendix 1, bike_inertia.m.  It converts the 
common dimensions to a three dimensional grid 
and lays out the appropriate 3D solid (torus, 
tube, prism, etc.) along the points.  Once this is 
done, the centers of mass of each element are 
calculated, along with the centers of mass for 
each rigid body.  Then the local inertial 
properties of each element are calculated which 

 
Figure 2: Simple bicycle geometric model 
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are then transformed and translated to the 
appropriate reference frame for each rigid body 
using direction cosines and the parallel axis 
theorem.  Finally the parameters used in the 
AUTOLEV code described in the following 
section are computed. 
 
Model Description 

 
Many different models have been developed 

for bicycles and motorcycles.  They range from 
simple one-degree of freedom models to multiple 
degree of freedom models with various elastic, 
and damping effects, and tire characteristics.  
The model chosen for this study is a three-degree 
of freedom model made up of four rigid bodies: 
the front and rear wheels, the front fork, and the 
rear frame/rider.  The bodies are connected to 
each other by three revolute joints; one about the 
head tube axis and two about the wheel axes. 

Many assumptions have been made to keep 
the model simple and they are as follows: 

• The cycle is traversing a flat plane 
• The wheels are knife edge discs that roll 

without slip 
• The rider is rigidly fixed to the rear 

frame and is riding no-handed 
• No viscous damping or elastic members 

are included, this system is perfectly 
rigid 

• The three revolute joints are frictionless 
The model was developed using Kane’s 

methods with the assistance of the program 
AUTOLEV.  The following descriptions use the 
syntax commonly associated with Kane’s 
methods. 

 

 
Figure 3: AUTOLEV representative model with 

constants labeled 
 

Each rigid body was given an alphabetical 
name.  The rear wheel is C, the frame/rider is D, 
the front fork is F, and the front wheel is G.  
These are depicted in Figure 3 along with ten 
constants that describe the bicycle geometry.  It 
is assumed that the bicycle is in its nominal 
upright position in the following descriptions of 
the constants. 

• Rr: rear wheel radius 

• Rf: front wheel radius 
• θ:  complement of the head tube angle 
• L1: the horizontal distance from the 

center of the rear wheel to the 
intersection of the head tube axis 

• L2: the distance along the head tube axis 
from the previous intersection point to 
the intersection of the L3 line 

• L3: the perpendicular distance from the 
center of the front wheel to the head 
tube axis (commonly called the fork 
offset distance) 

• L4: the horizontal distance from the 
center of the rear wheel to the center of 
mass of the frame/rider 

• L5: the vertical distance from the center 
of the rear wheel to the center of mass 
of the frame/rider 

• L6: the distance from the center of the 
front wheel to the location of the center 
of mass of the front fork that is 
perpendicular to the head tube axis 

• L7: the distance from the center of the 
front wheel to the location of the center 
of mass of the front fork that is parallel 
to the head tube axis 

Additionally three more reference frames 
were used to determine the configuration of the 
four rigid bodies in the Newtonian reference 
frame, N.  These are A the yaw frame, B the roll 
frame and E the head tube frame.  Figure 4 
shows how the seven reference frames and eight 
generalized coordinates define the configuration 
of the four rigid bodies within the Newtonian 
frame. 

 

 
Figure 4: Diagram of the generalized coordinates 
 

The descriptions of the generalized 
coordinates are as follows: 
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• q1: location of the contact point of the 
rear wheel and the ground plane in the 
n1 direction 

• q2: location of the contact point of the 
rear wheel and the ground plane in the 
n2 direction 

• q3:  describes the simple rotation of 
reference frame A in N or the yaw (or 
heading) angle of the rear wheel 

• q4: describes the simple rotation of 
reference frame B in A or the roll angle 
of the rear wheel 

• q5: describes the simple rotation of rigid 
body C in reference frame B or the 
angular rotation of the rear wheel 

• q6: describes the simple rotation of 
reference frame F in E or the steering 
angle 

• q7: describes the simple rotation of rigid 
body G in reference frame F or the 
angular rotation of the front wheel 

• q8: describes the simple rotation of the 
rigid body D in reference frame B or the 
pitch angle of the frame/rider 

Several important points must also be 
defined. 

• No: Newtonian origin 
• Co, Do, Fo, Go: centers of mass for each 

rigid body 
• Nc: rear wheel contact point on the 

ground 
• Cn: rear wheel contact point on the rear 

wheel 
• Ng: front wheel contact point on the 

ground 
• Gn: front wheel contact point on the 

front wheel 
All eight generalized coordinates are not 

needed to fully describe the configuration of the 
system due to the fact that both of the wheels 
must be in contact with the ground at all times.  
Mathematically speaking, the vector from the 
rear wheel contact point, Nc, to the front wheel 
contact point, Ng, must not have a component in 
the 3n̂  direction, thus the following relationship 
must hold. 
 

0ˆ3 =⋅ nr cg NN
 (1) 

 
To determine the needed position vector, 

direction cosine matrices for each simple rotation 
were calculated along with intermediate position 
vectors.  These calculations were determined 

symbolically in the AUTOLEV program 
FINDQ8.AL which is included in Appendix 2. 

The calculation of the position vector from 
the center of the front wheel to the front wheel 

contact point, on GGr , wasn’t as straightforward 
as the other position vectors.  The direction 
cosine matrix relating reference frames N and F 

was known and the fact that 2̂f is always 

perpendicular to on GGr allowed the vector to be 
determined to be: 

 

( )
( ) 3232

3232

ˆˆˆˆ
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nfnf

nfnf
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GG on

−⋅
−⋅=  (2) 

 
It turned out that the constraint dot product, 

(1), was a nonlinear function of the pitch, steer, 
and roll angles: 
 

( ) 0,,ˆ 8643 ==⋅ qqqfnr cg NN
 (3) 

 
This function was linearized about q8 = 0 

using a first order Taylor series expansion so that 
q8 could be algebraically solved for in terms of 
the two remaining variables. 
 

( )648 ,qqfq =  (4) 
 

This left q8 as a dependent variable and 
reduced the number of generalized coordinates 
required to seven.  FINDQ8.AL also computes 
the first time derivative of q8 for use in the 
second program, BICYCLE14.AL. 
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Figure 5: Linearization of 3n̂r cg NN ⋅  with q4 = 

q6 = 0 about q8 = 0 
 
Several checks were made using MATLAB 

to verify that the equation developed for q8 was 
correct.  The corresponding MATLAB code, 
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pitch.m, is included in Appendix 3.  Figure 5 
shows that the Taylor series expansion 
successfully linearized the dot product about 
q8=0. 

Figure 6 shows four graphs where either q4 
or q6 was held constant, while the other 
independent variable was varied to see if the 
pitch behaved as anticipated.  Each check did as 
expected thus confirming that the equation for 
pitch was correct. 
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Figure 6: Pitch behavior 

 
Equations of Motion 

 
Now that the configuration coordinates were 

minimized the equations of motion could be 
developed.  Kane’s method was used to derive 
the equations.  Kane’s method involves 
calculating the partial velocities and angular 
velocities of each rigid body in the system and 
also the partial velocities and angular velocities 
of any points that forces and torques may act 
upon.  The partial velocities, forces, torques, 
accelerations, masses, and inertia quantities can 

then be formulated into ∗+ rr FF
~~

where rF
~

are 
the generalized active forces resulting from 
external forces and torques applied to the system 

and ∗
rF

~
are the forces resulting from the 

acceleration of the system. Details of Kane’s 
method can be found in [1]. 

AUTOLEV, a symbolic manipulation 
program that easily employs Kane’s method for 
dynamic systems, was used to do the grunt work 
of the calculations.  The following will describe 
some of the details in developing the AUTOLEV 
code, BICYCLE14.AL which can be found in 
Appendix 4. 

The same constants and points described in 
the previous section were used in addition to the 
following mass and inertia properties.  All of the 
inertia tensors are about the center of mass with 

reference to the particular rigid body’s local 
reference frame. 

• MC, MD, MF, MG: the mass of each 
rigid body 

• 
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: the inertia tensor 

of the front wheel 

• 

�
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�

�

�

�
�
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IDIDID
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IDIDID
: the inertia tensor 

of the frame/rider 

• 
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IFIFIF
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IFIFIF
: the inertia tensor 

of the front fork 

• 

�
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�

�

�
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�

�

�

3300

0220
0011

IG

IG

IG
: the inertia tensor 

of the front wheel 
The direction cosine matrices describing the 

rotation of each reference frame were then 
calculated.  The only difference from the 
direction cosines in FINDQ8.AL was that the 
function for q8 was inserted which eliminated 
the dependent generalized coordinate. 

Two additional position vectors were 
created to locate the mass centers of the 
frame/rider and the front fork. 

The kinematical differential equations were 
chosen in such a manner that the seven 
generalized speeds simply equaled the 
derivatives of the seven generalized coordinates. 

 

rr qu �=  (5) 
 

The velocities of several important points 
could then be calculated.  The velocity of each 
center of mass was needed along with the 
velocities of points Cn and Gn which were 
needed to calculate the non-holonomic constraint 
equations.  The force due to gravity is the only 
force acting on the system, so no additional 
velocities were needed. 

Due to the previous assumption of no-slip 
rolling for both of the wheels, four non-
holonomic constraint equations could be derived.  
The velocities of points Cn and Gn in the ground 
plane must be equal to zero to enforce no-slip 
rolling so equations (6) and (7) must hold true. 
 

0ˆˆ 21 =⋅=⋅ nvnv nn CNCN  (6) 



 5 

0ˆˆ 21 =⋅=⋅ nvnv nn GNGN  (7) 
 

These dot products create four equations that 
are linear with respect to the seven generalized 
speeds, thus they can be algebraically solved to 
eliminate four of the generalized speeds.  The 
rear wheel angular speed, u5, the roll rate, u4, and 
the steering rate, u6 were chosen as the 
independent generalized speeds, which are 
typical choices in most of the related literature.  
The remaining dependent generalized speeds: u1, 
u2, u3, and u7 were solved for in terms of the 
independent generalized speeds.  This reduced 
the degrees of freedom of the system from seven 
to three. 

Next the angular accelerations of the four 
rigid bodies were computed along with the linear 
accelerations of the mass centers of each body. 

The four forces due to the acceleration due 
to gravity in the 3n̂−  direction were then 
applied to the mass centers of each body. 

This provided AUTOLEV with enough 
information to calculate the equations of motion 

in the form: 0~~ =+ ∗
rr FF  where r is number of 

degrees of freedom of the non-holonomic 
system.  The three equations of motion are linear 
in terms of the accelerations 4u� , 5u� , and 6u� .  
These accelerations were solved for thus putting 
the equations of motion in the form: 
 

( )71644 ,...,,,..., qquufu =�  (8) 

( )71645 ,...,,,..., qquufu =�  (9) 

( )71646 ,...,,,..., qquufu =�  (10) 
 

Finally a MATLAB m-file was generated 
that could simulate the system from initial 
conditions.  This code contained the equations of 
motion that could also be used for further 
linearization study. 
 
Simulation 
 

Simulation wasn’t necessary to accomplish 
the goals of this study but one simulation was 
run to help verify that the equations of motion 
were correct.  Schwab outlines a benchmark 
bicycle model in his paper [2] that was used for 
comparison.  He presents one nonlinear 
simulation that was reproduced with the 
simulation code created in AUTOLEV.  
Schwab’s parameters were converted to the ones 
described in the Model Description section in 

schwab.m, which is included in Appendix 5.  
The initial conditions were matched to Schwab’s 
and were as follows: 

 
0... 71 === qq  (11) 

( ) ��
�

	



�

�
= 0,

/5.4
,/5.0,, 654

rR
sm

sraduuu  (12) 

 
Figure 7 shows the results of the simulation 

that can be directly compared to Figure 3 in 
Scwhab’s paper.  The plot shows the roll rate, u4, 
the steer rate, u5, and the velocity of the center of 
the rear wheel, rRuv 5= .  The simulation 
turned out not to be identical with Schwab’s.  
The velocity has a higher initial peak and it 
settles to a lower value than in Schwab’s 
simulation.  But the general characteristics of the 
simulation match.  This suggests that the 
equations are basically correct.  The causes of 
the differences in the simulation are not yet 
understood but further comparison of the 
linearized model will be detailed in the following 
section. 
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Figure 7: Non-linear simulation 

 
Linearization of Equations of Motion 
 

The previous simulation showed that the roll 
and steer rates decayed in an exponential 
oscillatory fashion back to the nominal 
configuration for that particular velocity.  To 
determine if this is the case for all velocities 
without running a large amount of simulations 
the equations can be linearized and the system 
dynamics matrix can be formed.  The 
eigenvalues of the system dynamics matrix can 
then be examined to determine whether the 
system is unstable or not.  In general the 
kinematical differential equations and the 
equations of motion take the form: 
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( )rrr uuqqfq ,...,,,..., 11=�  (13) 

( )rrr uuqqfu ,...,,,..., 11=�  (14) 
 

These equations can be linearized about a 
nominal configuration using a multivariable first 
order Taylor Series expansion.  The expansion 
about the nominal configuration takes the form: 
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(15) 

 
The nominal configuration that is of interest 

is the upright bicycle traveling with a constant 
rear wheel angular velocity.  If 5u is constant 

then 05 =u�  and the system can be reduced to 
four equations. 
 

( )64714 ,...,,,..., uuqqfq =�  (16) 

( )64716 ,...,,,..., uuqqfq =�  (17) 

( )64714 ,...,,,..., uuqqfu =�  (18) 

( )64716 ,...,,,..., uuqqfu =�  (19) 
 

These four equations can then be linearized 
using equation (15) to produce the system 
dynamics matrix shown in (20). 
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(20) 

 
Due to memory limits in the educational 

version of AUTOLEV, the system dynamic 
matrix could not be calculated symbolically thus 
preventing the system to be put into the 
“canonical” form used in [2] and [3].  So the 
partial derivatives needed to define the matrix 
were calculated numerically using the definition 
of the partial derivative shown in (21).  These 

calculations are shown in bike_inertia.m in 
Appendix 1. 
 

( ) ( )
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→

=
∂
∂

 

(21) 

 
  As a check to the validity of the linearized 
equations of motion that were developed in (20), 
the numerical values of the system matrix for a 
particular velocity can be compared to the 
numerical values given by Schwab’s linearized 
equations.  Once again, Schwab’s parameters 
were converted to the ones in the Model 
Description section and the matrix was 
computed for a rear wheel angular speed of 
16.63 rad/s.  The calculated values are shown in 
(22). 
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�

15.747-18.03218.768-12.474
1.631-0.523-22.733-9.465

1000
0100

 (22) 

 
Schwab’s canonical numeric matrices were 

then transformed into the single system matrix 
for comparison.  Schwab’s numerical values are 
shown in (23). 
 

�
�
�
�

�

�

�
�
�
�

�

�

15.662-18.05319.295-12.400
1.635-0.519-22.669-9.470

1000
0100

 

(23) 

 
It can be seen that the linearized AUTOLEV 

equations of motion do not produce the same 
values as Schwab’s.  Most are relatively close 
but one entry has almost a three percent relative 
difference. 

The value of linearizing the equations of 
motion and building the system dynamics matrix 
lies in the eigenvalues of the matrix.  If any of 
the eigenvalues have positive real parts then the 
system is unstable and will not recover from 
perturbations.  The eigenvalues can be 
determined for a range of speeds encountered 
when riding a bicycle and plotted.  Figure 8 
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shows a plot of the real parts of the eigenvalues 
for a rear wheel velocity from 0 to 10 m/s. 

 

 
Three distinct eigenmodes are identifiable.  

The blue represents the weave mode, the yellow 
represents the capsize mode and the red 
represents the caster mode.  The weave and the 
capsize modes both have positive real parts at 
various speed ranges thus indicating instability. 

There are two velocities indicated on Figure 
8 that are of interest.  One is the velocity at 
which the weave mode becomes stable, vw, and 
the other is the velocity at which the capsize 
mode becomes unstable, vc.  These two 
velocities bound a stable speed range in which 
the bicycle will recover from perturbations. 

The weave mode has two distinct real values 
at very low speeds and the bicycle simply acts 
like an inverted pendulum.  If it is perturbed the 
bicycle will simply fall over.  At a certain speed 
the weave eigenvalues merge into an imaginary 
conjugate pair.  Above this speed the eigenmode 
takes on an oscillatory motion when perturbed 
and will not recover from the perturbation while 
below the weave critical velocity. 

The capsize eigenmode is real at all speeds 
and the bicycle will fall over in a spiraling 
fashion if perturbed above the capsize critical 
velocity.  The capsize mode is easily controlled 
because the eigenvalues are so close to zero as 
pointed out in [2] thus the capsize critical 
velocity usually has little practical significance. 

One final comparison between Schwab’s 
equations of motion and the ones presented here 
are an overlay of the eigenvalue plots.  Figure 9 
shows that the eigenvalues are slightly different 
and produce different critical velocities.  It is 
unknown at this point why there is a variation in 
the equations of motion developed here and the 
ones developed by Schwab.  More investigation 
is needed to find the source of the error. 

 

 
Figure 9: Eigenvalue comparisons 

 
Results 
 

Now that the two critical velocities have 
been determined for various geometric 
parameters, plots were developed showing the 
change in the critical velocities with respect to 
change in the four geometric parameters that 
were of interest. 

In terms of handling characteristics a lower 
weave critical velocity would require less control 
from the rider at a lower speed.  This would be 
very useful for beginning riders, because they 
would be assisted by the self-stabilization that 
the bicycle offers without having to ride at a 
higher speed. 

The capsize critical velocity has less 
significance to handling as mentioned in [2], but 
if this velocity happens to be higher than the 
normal operating range of the bicycle then extra 
control will never be required from the rider to 
stabilize this mode.  Typical road riding speeds 
are under 13 m/s with higher speeds sometimes 
reached in downhill descents. 

So the only conclusions that can be 
confidently gleaned from the following plots is 
whether or not the bicycle will be more or less 
stable at lower speeds. 

Figure 10 shows a plot of front wheel 
diameter versus the two critical velocities and 
Figures 11 and 12 show the bicycle geometric 
configuration for the smallest wheel and the 
largest wheel checked.  When the front wheel 
diameter is increased the mass and the inertia of 
the wheel are also increased due to the program 
design.  Figure 10 shows that both of the critical 
velocities decrease as the wheel size increases.  It 
isn’t possible to know whether the diameter, 
mass, or inertia have the greatest effect.  A 
similar graph in [3] shows only front wheel 
inertia versus critical velocities and it is shown 

 
Figure 8: Real parts of the eigenvalues 
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that inertia alone decreases the weave critical 
velocity.  But in general as the front wheel size 
increases the bike self-stabilizes at lower speeds. 
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Figure 10: Effects of front wheel size 
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Figure 11: Smallest wheel Figure 12: Largest wheel 

 
Figure 13 shows the effect of changing the 

head tube angle on the critical velocities.  The 
following figures, 14 and 15, once again show 
the two extreme configurations.  As the head 
tube angle becomes steeper the weave critical 
velocity decreases while the capsize critical 
velocity increases. 

64 66 68 70 72 74 76 78 80 82
3

3.5

4

4.5

5

5.5

6

6.5

Head Tube Angle [deg]

V
el

oc
ity

 [m
/s

]

Weave Critical Velocity
Capsize Critical Velocity

 
Figure 13: Effects of head tube angle 
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Figure 14: Shallowest head 

tube angle 
Figure 15: Steepest head 

tube angle 

 
Figure 16 shows trail versus critical 

velocities.  Trail is the geometrical parameter 
most often associated with handling.  A seasoned 
bicycle designer, Tim Paterek, states that trail 
should fall in the range of 0.05 m to 0.065 m for 
the bike to have comfortable handling.  He says 
that a smaller trail will cause the bicycle to be 
“twitchy” making the bicycle less manageable 
and that a larger trail will cause the handling to 
be more “relaxed”.[4]  No correlation between the 
data shown in Figure 16 and Patarek’s comfort 
range can be seen.  Although, it is shown that as 
the trail increases both of the critical velocities 
increase.  The weave critical velocity decreases 
as the trail decreases, thus making the bike more 
stable at lower speeds.  The capsize critical 
velocity drops sharply as trail decreases and may 
influence the controllability of the bicycle more 
than in previous cases. 
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Figure 16: Effects of trail 
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Figure 17: Zero trail Figure 18: Largest trail 

 
Figure 19 shows how the change in 

wheelbase affects the critical velocities.  Both of 
the critical velocities increase in a linear fashion 
with similar slopes as the wheelbase is increased.  
Longer wheelbase bicycles such as tandems and 
recumbents seem to usually be more difficult to 
control at lower speeds so this corresponds with 
the graph. 
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Figure 19: Effects of wheelbase 
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Figure 20: Smallest 

wheelbase 
Figure 21: Largest 

wheelbase 
 

These four graphs can give some insight into 
bike design, but mainly only to help create a 
bicycle that is more stable at lower speeds.  It is 
difficult to extract any criteria that would 
describe how responsive or sluggish different 
bicycle configurations are at normal riding 
speeds.  An examination of this model using 
more in-depth control theory may be able to 
provide this kind of information.  Also 
correlating this study with a rider’s assessment 
of handling qualities of different frame geometry 
could provide a valuable set of guidelines for 
designing bicycles. 
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