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SISO Control of a Bicycle-Rider System  
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Introduction 
The inherent dynamic instability of two-wheeled 
vehicles naturally leads to questions of control.  The 
bicycle-rider system itself is a dynamically complex, 
multiple-degree-of freedom system.  Thus, how is it 
possible to maintain the bicycle upright?  The 
seemingly simple task of riding a bicycle is made 
possible by the complex control system of the rider.  
Although the rider controls various inputs, this paper 
briefly examines how only the front wheel steering 
input may be used to control the bicycle roll angle.  If 
a true controller were to be realized, its design could 
take various forms.    

The previously derived single degree-of-freedom 
model of a bicycle-rider system will be re-stated.  
The linear model presented by Karnopp was used as a 
reference in the derivation of this model [1].  This 
model will then be used to develop a single input, 
single output controller.  The controller is developed 
first by classical, frequency domain techniques.  This 
strategy is then compared to full-state feedback 
control wherein a regulator designed by pole-
placement is compared to an LQR controller. 

 

System Model 
The previously developed model of the bicycle-rider 
system treated the bicycle and rider as a single rigid 
body. The rear wheel velocity at the contact point 
was assumed to be constant, and the wheels were 
assumed to be in pure rolling contact with the ground 
with no sideslip. The inherent stability characteristics 
associated with an offset, angled front fork and the 
rotating wheels were neglected.  This led to the 
nonlinear, second order differential equation given by  
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The system parameters as shown in Figure 1 and 
Figure 2 are as follows:   

I1  Principal moment of inertia about the roll axis 
[ 2mkg ] 

m  Bike & Rider mass  [kg] 
h Height of the center of mass when the bicycle is 

upright [m]. 
a Distance from the projection of the center of mass 

on the ground plane to the contact point of rear 
wheel [m]. 

b Distance along the ground between the wheel 
contact points [m]. 

rv  Forward velocity of rear frame [ sm ] 

g   Local acceleration due to gravity [ 2sm ] 

   Front wheel steering angle. [Rad] 
   Bicycle roll angle [Rad]   

 

Figure 2. Rear view of bicycle-rider system. Taken from 
Åström et al. [2005]             

Figure 1. Ground plane geometry of bicycle-rider system 
in a turn.
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In linearizing Equation (1), both of the angles  and 

 
were assumed to be small (< 35 ).  The equilibrium 
point for both of the parameters is zero, and this can 
only be assumed if the bicycle is traveling in a fairly 
straight path with a relatively high rear wheel 
velocity. Because the angles are small, the squared 
term on the left hand side of Eq. 1 can be eliminated. 
Substituting the small angle approximations 
sin , 1cos , and tan are into the 
equation yields the linear form  
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Validity of Linear Model 
The validity of the linear model is tested by 
comparing the solutions of Equation 1 and Equation 
2 from an initial roll angle, o of 5 degrees and an 
initial roll rate of 0 degrees per second.  The steering 
angle 

 

and its derivative are set to zero.  The 
constant forward velocity vr is 5m/s.  These solutions 
are plotted in Figure 3 below.   Both solutions reveal 
that the bike falls over, as expected.  Note that the 
solutions do not significantly diverge until a roll 
angle of 90 degrees.  That is, the linear model is a 
reasonable approximation until the bike has fallen 
completely over.  For our assumptions, the bike roll 
angle does not exceed the maximum normal riding 
condition of 35 degrees.  In this case, the solution to 
the linear equation is nearly identical that of the 
nonlinear equation.     

State Equations 
Due to the derivative of the steer angle input in 
Equation 2, derivation of the state equations is not as 
simple as substituting variables x1 and x2 for 

 

and its 
derivative and deriving the first order equations.  
Thus, the state equations were previously developed 

by hand and resulted in the controller companion 
form given by 
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Unfortunately, the physical significance of the states 
x1 and x2 is difficult to interpret in this state space.  
This is most apparent by noting the C matrix; the 
output 

 

is a linear combination of the states.  We 
desire to specify an initial roll angle o to test the 
abilities of various controllers to bring the bike to the 
upright position.  In the controller companion form, 
specifying the initial state x1(0) is, therefore, 
complicated by the fact that  

)0()0(1x .  

Converting to the observer companion form 
alleviates this inconvenience.  Transposing the above 
A matrix, letting B equal CT, and letting C equal BT, 
the state space in observer companion form is given 
by 

with the output equation 
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From the output equation, it is now obvious that state 
x1 is the bike roll angle, .  By solving the first state 
equation for x1, we can write the second state, x2, in 

terms of 1x (which is ).  Thus, both states in 

observer companion form are given by 
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Figure 3. Linear & nonlinear solutions to initial roll angle
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So, specifying an initial value for state x1 is, in fact, 
specifying the initial roll angle from which to run 
simulations.  The equation for state x2 also reveals 
some physical significance.  For a constant forward 
velocity, x2 represents a linear combination of roll 
rate and a term comparable to a steer rate.   This 
steer rate is evident in the units of the second term.  

Recall that we are considering nonzero, constant 

values for the forward velocity term, rv .  Thus, by 

specifying a zero initial condition for state x2, not 
only is the initial roll rate zero, but also the initial 
steer angle.    

Roll Angle Performance Criteria 
In order to compare control strategies, we specify 
reasonable performance criteria to meet the goal of 
bringing the bike to an upright position from an 
initial roll angle of 5 degrees while traveling at a 
constant velocity of 5m/s.  The desired roll angle 
response from these initial conditions was decided to 
be  

 

Overshoot (OS) < 1deg 

 

2% Settling time (ts) < 2sec  

To limit the control input required to meet these 
criteria, a limit on the steer angle was decided to be  

 

 < 20 deg.  

Although by minimizing the input, less energy is 
required to bring the system into equilibrium.  So it is 
desired to minimize , possibly keeping it under 5 
degrees.  

Classical Control Design 
The linear model derived in Equation (2) was 
mapped into the frequency domain by the use of the 
Laplace transform. In the frequency domain, the 
transfer function of the system derived by expressing 
the ratio of the roll angle to the steering angle of the 
bicycle-rider system is given by   
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In order to stabilize the system, a proportional 
controller was used. In order to find the values of K 
that keep the system stable the Routh-Hurwitz criteria 
was utilized.   

Table 1.     Routh-Hurwitz criteria   

S2 1 9.42-K348 
S1 -87K 0 
S0 9.42-K348 0 

 

From Table 1 it can be seen that in order for -87K to 
be positive, and keep the system stable, K has to be 
less than zero.  

The step response of the system is presented in 
Figure 4. It can be seen that the system settles in 
0.246 seconds. However, the %OS is of 10.5% which 
is completely off the design criteria specified.   

The bicycle-rider system was modeled as an ideal 2nd 

order system. Although ideal 2nd order systems have 
only two poles and no zeros, the bicycle-rider system 
had one zero at -10 and two poles at 3.07. Even 
when the zero affected the transient response of the 
system, the 2nd order approximation was used in 
order to simplify the calculation of the location of the 
poles and zeros for the compensation system. The 
transient response equations, (7) and (8), that are 
valid for ideal 2nd order systems were used to aid in 
the calculations.  
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Figure 4. Step response of proportionally controlled 
system.  

In order to meet the performance criteria, Equations 
(7) and (8) were used to obtain the damping ratio and 
the natural frequency of the uncompensated system.  
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The values of n  and 

 
yield the desired operating 

point in the complex plane as shown in Figure 5.  In 
order for the system to have the desired response, the 
root locus has to pass through this operating point. 
This point was found to be s=-26.4+18j.   

  

Figure 5. Desired operating point and location of poles & 
zeros of the plant   

Using MATLAB to analyze the root locus (Fig 6), it 
was found that the root locus does not pass through 
the operating point.  Thus, additional compensation 
was necessary to shift the root locus accordingly. 

Figure 6. Root locus of proportionally controlled system   

To meet the performance criteria and decrease the 
steady-state error, a lead-lag controller was designed. 
Use of a lead-lag controller precludes the use of the 
more expensive and energy-intensive circuitry 
associated with PID controllers.  PID controllers are 
considered the ideal controllers for improving 
transient response and eliminating steady state error 
[Nise, 2004]. However, the real controllers that are 

used to correct those deficiencies are the lead-lag 
controllers.   

The transfer function of a lead controller has a pole 
and a zero to be placed strategically so as to modify 
the root locus of the system. The zero was selected so 
as to cancel a pole of the plant.  Based on its value 
and the locations of the plant s poles and zeros, the 
pole of the lead controller was determined.    

After selecting the location of the zero, the location 
of the pole was calculated. In order for a pole to be 
part of the root locus, the phase of the characteristic 
equation of the closed loop system needs to be an odd 
multiple of 180º, as shown in equations (9) and  (10).   
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Where q is an integer.  

 

Figure 7. Lead controller pole-zero placement    

The angle of the new pole can be obtained from the 
next equation, which is based on Equation (10) and 
Figure (7).  

1 2 3

132.34 172 172 172.4 180 139.94º
p c

p

  

With the angle p

 

the location of the pole is found 

by geometry.  
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Once the pole and the zero are located, the gain of the 
controller is calculated from Equation (10).  

1
( ) ( ) 1
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c
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        (11) 

By substituting the magnitudes of all poles and zeros 
the gain found was k = 2.108  

In order to decrease the steady state error, a lag 
controller was designed. The main objective of a lag 
compensator is to place a pole and a zero very close 
to each other and to the origin, so the pole can act 
like an integrator, but with passive circuitry.   

Based on the most common lag controllers [5] the 
objective was to increase the static constant Kpc of the 
uncompensated system (Kpu) by a factor of 5.  

lag

lag
pupupc P

Z
KKK 5

   (12) 

laglag
lag
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By choosing lagP =0.01 then lagZ =0.05  

The transfer function of the compensator and the 
compensated system respectively are presented next.  
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As shown in Figures 6 and 8, the root locus of the 
compensated and uncompensated systems did not 
vary considerably because of the pole-zero 
cancellations generated during the design process of 
the controller. Note that the lead compensator 
produced a shift to the left, and such shifting 
improved the transient response.   

Table 2:  Classical Control Design 

deg1.5

sec75.0

deg05.0

108.2

71.183.3

max

2,1

st

OS

K

is 

  

Figure 9. Step response of compensated (green) and 
uncompensated (blue) systems.  
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Figure 9 presents the step response of the 
compensated and uncompensated systems. It can be 
seen that the transient response was improved after 
the lead-lag compensation and the steady-state error 
was decreased from 5% to 1%.   

In order to test the system s performance, an initial 
roll angle of 5 degrees was applied. The 
instantaneous steering angle required to bring the 
system upright was measured. Figure 11 shows that 
to compensate the initial roll angle (Fig. 10), the 
handle bar had to be rotated 5.1º. This performance 
meets the design criteria as it can be seen in Table 2.   

 

Figure 10. Roll response to initial roll angle of 5º  

 

Figure 11. Steer angle used to overcome the initial roll 
angle 

Disturbance Response 
A disturbance was included in the system by adding 
it to the steering angle (see the Simulink diagram in 
the appendix).  A triangle signal with magnitude of 6 
was used.  With the bicycle upright and at a velocity 
of 5m/s, Figure 14 shows that the bicycle-rider 
system leans less than 0.2 degrees as a result of the 
disturbance. Figure 12 shows the disturbance added 
to the system.  Figure 13 shows that the bicycle 
initially needs to be steered 6 degrees in the opposite 
direction of the disturbance turning angle.  Then an 
oversteer almost equal to the magnitude of the roll 
angle produced is required to bring the system to the 
upright position.   

 

Figure 12. Disturbance signal added to system 

 

Figure 13. Steering angle required to compensate for a 
road disturbance   

 

Figure 14. Roll angle caused as a result of disturbance on 
road  

By varying the magnitude of the disturbance, similar 
behavior was observed.  This implies that an 
instantaneous steering angle of the same magnitude 
of the disturbance in the opposite direction is 
required.  Then an oversteer equal to the magnitude 
of the roll angle produced on the system is needed. It 
should be noted, however, that for large disturbances 
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the simulation requires steer angles beyond the 
physical limits of the system.  By considering the 
speed at which the system is traveling (5m/s), it was 
found in the literature that steering angles above 20 
degrees cause roll angles that ultimately cause 
gyroscopic effects on the system that can lead to 
instabilities [4]. The simplifications and assumptions 
used in the linear model do not account for these 
effects, however, and the simulation allows 
unrealistic values for steer angle to keep the bicycle 
upright.    

Full State Feedback Regulator 
We begin our design of the full state feedback 
controllers by assuming that the states given by 
Equations (5) can be measured without error.  This 
assumes, then, that the roll angle, roll rate, and steer 
angle all can be measured.  By also neglecting 
modeling errors, we can exclude noise inputs to the 
system.  Letting the desired state vector be zero, the 
control law is simply  

)()( tKxtu                       (16)  

where the input, u(t), is the steer angle, (t).  The 
closed loop state equations become   

).()()( txBKAtx                (17)  

The matrix (A-BK) dictates not only the stability of 
the closed loop system, but also the response of the 
roll angle output.  Thus, the controller gain matrix, K, 
must be designed such that we meet the stability and 
performance criteria.  This is done first by means of 
placing the two closed loop poles at desired locations 
in the left half of the complex plane.  

Closed-Loop Pole Placement 
Design of the controller gain matrix K is performed 
using Ackerman's pole-placement formula [2].  The 
computational steps involved in solving for the K 
matrix are programmed in the MATLAB function 
acker.  For this single-input system, the command 
was used as    

>>K = acker(A,B,V).  

Here, A and B are the state coefficient matrices given 
in Equations 3 or 4.  V is a vector containing the two 
desired closed loop poles.  As mentioned earlier, the 
locations of these closed-loop poles determine the 

performance when the bike is placed at an initial roll 
angle.  However, the performance criteria can not be 
translated directly into a second order system 
damping ratio or natural frequency in the manner of 
classical root locus design.  This is because both 
states of Equation 5 are being fed back to the 
controller, yet we are only interested in the response 
of the first state, x1, which is the roll angle.  Thus, the 
closed loop poles are initially selected arbitrarily 
until the desired response of roll angle is met.  

This process of selecting and moving the closed-loop 
poles around reveals the obvious trade-off that exists 
between the overshoot and settling time.  By moving 
the poles further inside the left-half plane the initial 
response was sped up at the expense of increasing the 
overshoot.  This trade-off between response time and 
overshoot is depicted in Figure 15 below.  

By moving poles to achieve the desired response, we 
also notice the cost associated with the control input.  
If a faster response is desired, a larger steer angle is 
demanded.  In some cases, the cost of the steer angle 
is physically impossible. One example of an 
excessive front fork angle is shown in Figure 16.  In 
this case, we were able to achieve very good response 
time with minimal overshoot.  However, 53 degrees 
of instantaneous steer angle input was required.  This 
far exceeds the design limit of 20 degrees.  It is 
evident that with higher order systems, arbitrary pole 
placement can become tedious, at best. 

j d 

 

decrease  
rise time

 

reduce 
overshoot

 

x 

x 

x 

x 

x 

x 

Figure 15.  Trade-off between response time and 
overshoot. 
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Figure 17. Final design response and input.

  

One method for placing poles is to employ the 
Butterworth pattern discussed by Tewari [2].  
Although well suited for higher order systems, this 
pattern proved very successful for this second order 
system.  In this pattern, the poles are place on a circle 
centered at the origin with a radius, R.  The poles 
come from the solution of the equation  

12 )1()/( nnRs                   (18)  

where n is the order of the system.  For our simple 
second order system, the poles are the solutions of  

01
2

2

2

s
RR

s
.                (19)  

By trying various values for the radius, a satisfactory 
roll angle response was achieved with a cost of 5 
degrees of steer angle input.  This is shown in Figure 
17 below.   

The chosen poles and the corresponding gain matrix 
are listed in Table 3.  Note the difference between the 
gains associated with each state.  K1 is nearly seven 
times greater than K2.  This may be explained by the 
fact that our design focuses only on the response of 
state x1 (roll angle) and not state x2.      

Table 3:  Pole-Placement Design 

deg0.5

sec5.1

deg28.0

150.0001.1

01.301.3

max

2,1

st

OS

K

is 

   

LQR Control 
We now employ optimal control to design the 
regulator gain matrix K.  The LQR method is based 
on minimizing the quadratic cost functional, J(u).    

dtuuxRxuJ
T

TT

0

  

R and 

 

are weighting matrices for the states and 
inputs, respectively.  They are both constant and 
specified by the designer.  For the regulator problem 
with T= , it can be shown that minimizing the cost 
functional gives the optimal input  

txPBtKxtuopt

  

where P is the positive definite solution to the 
algebraic steady state Riccati Equation.  This is only 
true if the initial conditions are given, R and 

 

are 
both positive definite, (A,B) is controllable, and P( ) 
= 0.  Our system meets these criteria so this method 
can be implemented.  

The LQR method allows the designer to focus her 
attention on establishing a cost, or weight, to each 
state and each input.  The weighting is normally 
guided by the physical nature and limitations of the 
system parameters.  Our system has two states, x1 and 
x2 shown in (5), and one input, .  We are primarily 
concerned with x1 and 

 

and desire these to both be 
kept within their physically acceptable ranges.  x2 on 

Figure 16. High cost of control input.
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the other hand is a quantity that doesn t have a 
distinct physical meaning, so we are less concerned 
with it.  With this in mind we were able to begin 
choosing both R and .  

Even with a small order system such as ours, the 
Riccati Equation is nonlinear and thus P is difficult to 
solve for.  MATLAB s function, K=lqr(A,B,R, ), 
solves the nonlinear Riccati equation numerically, 
thus taking the difficulty out of calculating K.  We 
made use of this function and all that was required by 
the designer was the choices of R and .  

We began by letting R equal the identity matrix and 

 

be equal to one.   From some trial and error it was 
determined that simply decreasing the weighting of 
x2, yields good results that meet the design criteria.  
This corresponds to the previous discussion about 
which parameters are more important for weighting.  
The state, x2, is penalized less and the controller 
doesn t keep it in check as with x1 and .  The best 
results are shown in graphical form in Figure 18 and 
are also listed in Table 4.  

Figure 18. LQR Underdamped Response   

Table 4:  LQR Design 

deg2.6

sec86.0

deg02.0

254.0231.1

32.254.4

max

2,1

st

OS

K

is 

 

These results show that a small overshoot and settling 
time can be achieved with a relatively small input 
much like the results of the previous two controller 

designs.  But, by manipulating the 

 
value the results 

can be improved slightly.  By decreasing 

 
the 

weighting of the input, , is decreased.  This will 
effectively let the controller allow a higher value of 

 
to be used to bring the system into equilibrium at a 
faster time.  The value of 

 
can then be brought very 

close to its saturation point.  This gives the improved 
results shown in Figure 19 and Table 5, but at the 
expense of using more energy from the input.  

By bringing the steering angle close to its saturation 
limit, the overshoot can be eliminated. This produces 
an overdamped response with two negative real 
poles.  This also reduces the settling time slightly.  
This is an optimum solution, but subject to our 
lenient saturation point for the steering angle.  Figure 
19 also shows that the steering rate must be high to 
achieve this response, which we let go unchecked in 
our controller.  But, if we had realistic specifications 
for a steering actuator we could determine its limits 
and keep the controller from requiring an extreme 
steering angle by properly weighting .  

Figure 19. LQR Overdamped Response   

Table 5:  LQR Design  High 

 

deg1.19

sec6.0

4153.8165.3

14.9

05.10

max

2

1

st

K

s

s 

 

The implementation of the optimal LQR controller 
met the required design criteria, but was mainly 
dependent on trial-and-error tactics to find the needed 
solution.  The LQR would more applicable to a 
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system with state variables and inputs that have a 
stronger physical meaning and strict limiting criteria.  

Control Strategy Comparison 
The results of the final controller designs using 
classical techniques and two state-space methods are 
summarized in Table 6 below.  The poles listed in the 
Classical column are the dominant poles of the closed 
loop design.  Overall, the classical control strategy 
achieves the best roll response while minimizing the 
steer angle input.  The LQR controller ranks a close 
second with its slightly smaller overshoot costing 
greater steer input and longer settling time.    

Table 6. Control Strategy Results  

 

Classical LQR Pole-Placement 
Poles -3.83 1.71i -4.54 2.32i -3.01 3.01i 
Gains 2.108 [-1.231 -0.254] [-1.001 -0.150] 

OS  0.05 0.02 0.28 
ts  0.75 0.86 1.5 

max 5.1 6.2 5.0 

 

The closed loop poles for both state feedback 
controllers as well as the dominant poles from the 
root locus design are plotted together in Figure 20.  

Note that the results from the LQR and the pole 
placement control design methods yield nearly the 
same closed loop poles.  In fact, by using LQR 
designed poles in the Ackerman pole placement 
formula, the same regulator gain matrix will result.  
Thus, the closed loop matrix (A-BK) yields the same 
response.  

Required design time and methodology can be 
examined for further comparison.  The classical 
design method allows the designer to input the design 

criteria and solve for an exact solution for the input 
parameters.  On the other hand, both the pole 
placement and LQR strategies required much trial 
and error.  Once the solution came close to what was 
desired, some intuition and more concrete reasoning 
could be used to either adjust the poles or adjust the 
weighting matrices to improve the response.  

The classical method requires more understanding of 
the depths of the design process, but for a SISO 
system like ours it provides a more direct method to 
the best solution.  

Conclusion 
For a SISO system classical control methods are hard 
to beat, for both better results and its unambiguous 
design methods.  The advantages to full state 
feedback quickly become apparent when the system 
has multiple inputs and outputs and when dealing 
with real limited physical systems.  Much more 
complicated bicycle models can be constructed with 
many more inputs and outputs and more realistic 
actuators.  Once this is done, the classical control 
method will become less useful and may not be 
useful at all.  The modern control methods discussed 
in this paper would then have a much clearer 
advantages to developing a controller for a real 
bicycle.  
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Appendix  

Simulink model of classical control system   

Signal 1

Theta Ref

Scope6

Scope5

Scope4

Scope3

Scope2 Scope1

Scope

Signal 1

Disturbance

zeros(s)

poles(s)

Compensator

(s+10)

(s+3.07)(s-3.07)

Bicycle-Rider T F
(with initial outputs)

Error

Theta Roll ang

Delta Steer ang

Disturbance 

Matlab Code for Classical Control  

% MAE 272 Classical Control Analysis of bicycle-rider system model   

m=87; 
g=9.81; 
I=3.28; 
h=1; 
a=0.5; 
b=1.0; 
U=5;   

s=tf('s'); 
G=(m*h*U*(a*s+U))/((I+m*h^2)*s^2-m*g*h); 
rlocus(G) 
CL=feedback(G,1) 
zpk(CL) 
ltiview   

%Lead & lag control 
Gcl=39.65*((s+0.05)*(s+3.07))/((s+5)*(s+0.01)); 
%Gc=2*(s+.1)*(s+3.07)/((s+0.01)*(s+5.3)); 
TF=Gcl*G; 
rlocus(TF) 
sgrid(0.826,0) 
CLTF=feedback(TF,1);  

MATLAB Code for Pole Placement  

% 1-DOF Bicycle Model model in both state space and transfer function form.  
% Full State Feedback Control using both Pole-placement Designs  

clear all 
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clc 
format compact  

% Parameters & Constants 
degtorad = pi/180;  radtodeg = 180/pi; 
g = 9.81; 
I = 3.28;   %principle moment of inertia, kg*m^2 
m = 87;  %mass, kg 
h = 1;   %height, m 
a = 0.5;   b = 1.0; 
U = 5;  %constant forward velocity, m/s  

% Matlab's-Calculated State Space from the system transfer function  
num = -m*h/b*[a*U U^2]; 
den = [(I+m*h^2) 0 -m*g*h]; 
sys = tf(num,den); 
%fprintf('Controller Companion State Space:\n') 
[A,B,C,D] = tf2ss(num,den); 
System_Poles = eig(A);     

% Controllability and Observability 
P = ctrb(A,B);  % controllability matrix 
rank(P); 
N = ctrb(A',C');  %observability matrix 
rank(N);  

% Convert to Observer Companion Form 
Ao=A';  Bo=C';  Co=B';    
A=Ao;   B=Bo;   C=Co; 
sys = ss(A,B,C,D);  

% Design Regulator Gain Matrix, K, w/ pole placement 
r = 4.25;      %radius of 'Butterworth' pattern 
disp('Closed-loop pole placement:') 
% V = roots([1/r^2  sqrt(2)/r  1])  %desired closed loop poles 
V = [-4.54 + 2.32i; -4.54 - 2.32i] 
K = acker(A,B,V); 
ACL_1 = A-B*K;   %closed loop dynamics 
sysCL_1 = ss(ACL_1, zeros(2,1), C, D);   %closed-loop state space  

% Regulator-Controlled System: Response to IC's 
[theta,t,X] = initial(sysCL_1, x_in',t); 
theta_deg = theta*radtodeg; 
delta = -K*X';   %input steer angle 
delta_deg = delta*radtodeg; 
OS = min(theta_deg);  %overshoot 
tp = t(find(theta_deg==OS));  %peak time 
ts = stime(t,theta_deg);    %settling time 
delta_max = max(abs(delta_deg));  %largest absolute steer input 
fprintf('OS= %4.2f deg,  tp= %3.1f sec,  ts= %3.1f sec,  max input= %4.1f deg\n',OS,tp,ts,delta_max) 
figure(2) 
subplot(2,1,1),plot(t,theta_deg,'b'),title('Controller Response to Initial Conditions'),xlabel('Time (s)'),... 
    ylabel('\theta (deg)'),grid 
subplot(2,1,2),plot(t,delta_deg,'r'),title('Steer Angle Input, \delta'),xlabel('Time (s)'),ylabel('\delta (deg)'),grid 
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MATLAB Code for LQR Design  

clear all 
close all 
clc 
format compact  

% Parameters & Constants 
degtorad = pi/180; radtodeg = 180/pi; 
g = 9.81;    %local acceleration due to gravity, m/s^2 
I = 3.28;    %principle moment of inertia, kg*m^2 
m = 87;      %mass, kg 
h = 1;       %height, m 
a = 0.5;     %rear wheel to cg projection, m 
b = 1.0;     %wheel base, m 
vr = 5;      %constant forward velocity, m/s  

%Build Observer Canonical State Space 
fprintf('Observer Companion State Space:\n') 
A = [[0               1]; 
     [m*g*h/(I+m*h^2) 0]] 
B = [[-m*h*a*vr/b/(I+m*h^2)]; 
     [-m*h*vr^2/b/(I+m*h^2)]] 
C = [1 0] 
D = [0]  

% Design Regulator Gain Matrix, K, w/ LQR 
R = [1 0 
     0 1e-2];                       %state-weighting matrix 
Lambda = [0.07];                       %control cost matrix 
[K,S,E] = lqr(A,B,R,Lambda);   
K 
ACL = A-B*K                            %closed loop dynamics 
disp('LQR Closed-loop poles:') 
CL_System_Poles = E                    %closed loop poles 
sysCL = ss(ACL, zeros(2,1), C, D);     %closed-loop state space  

% Optimally-Controlled System: Response to IC's 
t = (0:0.01:4);   x_in = [5*degtorad 0*degtorad]; 
[theta,t,X] = initial(sysCL, x_in',t); 
theta_deg = theta*radtodeg; 
delta = -K*X';    %input steer angle 
delta_deg = delta*radtodeg; 
OS = min(theta_deg);  % error overshoot 
tp = t(find(theta_deg==OS));  % peak time 
delta_max = max(abs(delta_deg));  %largest absolute steer input 
theta_final=theta_deg(length(theta_deg)) 
% Calculate the %2 of 1 deg settling time 
% Reverse order of theta and t matrices 
for i=0:(length(theta_deg)-1) 
    theta_flip(i+1)=theta_deg(length(theta_deg)-i); 
    t_flip(i+1)=t(length(t)-i); 
end 
theta_flip=theta_flip'; 
t_flip=t_flip'; 
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% Find the first value larger than the criteria 
for i=1:length(theta_flip) 
    if abs(theta_flip(i))>=0.02 
        index=i; 
        break 
    end 
end 
ts=t_flip(index) %display the settling time 
fprintf('LQR overshoot= %4.2f deg, peak time= %3.1f sec, max input= %4.1f deg\n',OS,tp,delta_max) 
figure(2) 
subplot(2,1,1),plot(t,theta_deg,'b'),title('Optimal Controller Response to Initial Conditions'),xlabel('Time (s)'),... 
    ylabel('\theta (deg)'),grid 
subplot(2,1,2),plot(t,delta_deg,'r'),title('Steer Angle Input, \delta'),xlabel('Time (s)'),ylabel('\delta (deg)'),grid 
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