ENG 004 Lecture 4, Oct 9, 2012

Announcements

- Turn in HW #1 now. Place in stack corresponding to your section.
- Four wait listed students have been added.
- Read beginning of Chapter #5
- Lecture HW #2 will be posted after class.

Topics

Drawing Types

3D to 2D, 2D to 3D

Diagrams

Legibility/Communication

MIS- DON'T LEGI- TAKE FOR BILITY ICATION. COMMUN

Drawing Types

Projections and Perspective

- One point perspective
- Two point perspective
- Three point perspective
- Parallel Projection (infinite focal point)

One point perspective

One point perspective

Two point perspective

- Most realistic
- Does not preserve scale

Two point perspective

Two point perspective

10/39

Parallel Projections

Parallel projection corresponds to a perspective projection with an infinite focal length (the distance from the image plane to the projection point)

Orthographic projection

Parallel project representation of a three dimensional object in two dimensions

Axonometric

To measure along axes.

Multiview Projections

Up to 6 views of an object are projected onto planes perpendicular to the coordinate axes. The view positions follow one of two schemes: First Angle or Third Angle

Pictorial Projections

Image of object from skewed direction to reveal all axes

Isometric, Dimetric, Trimetric

Axonometric Projections

Type of parallel projection, more specifically a type of orthographic projection, used to create a pictorial drawing of an object, where the object is rotated along one or more of its axes relative to the plane of projection

Isometric Projections

All three axes are equally foreshortened and angled 120 degrees apart.

Lines are parallel.

Isometric Projections

Isometric Limitations

Isometric Limitations

Orthographic Axonometric Multiview Projections

Third Angle Projection

Orthographic Multiview Projections

Orthographic Multiview Projections

Oblique

Projects an image by intersecting parallel rays (projectors) from the threedimensional source object with the drawing surface (projection plane).

 θ is typically 45 degrees

x-y scales are the same

z scale is between 0 and 1, usually 1/2

Oblique

Drawing Types

Diagrams

Ideas are captured in a visual format using symbols, words, lines, etc.

- shows relationships
- show critical issues or functions
- organize concepts
- visual note taking
- free form

Types

- Graph based: tree, network, flow chart, Venn
- Chart based: histogram, bar char, pie char, function graph, scatter plot
- Infographics

Tree diagrams

Flow chart

Represents an algorithm or process

Flow chart: Freehand

Venn diagrams

Show all possible logical relations between a finite collection of sets

Paul Bennett IDEO

Click me

Engineering Diagrams

- Free body diagrams
- Block diagrams
- Circuit diagrams
- Exploded views
- Hydraulic diagrams
- Sankey diagrams

Statics: Free Body Diagrams

Controls: Block Diagrams

Materials: Lattice Diagrams BodyCentered Cubic (BCC) FaceCentered Cubic (FCC) Hexagonal Clone-Packed (HCP)

Fluids: Flow Diagrams

Fluids: Hydraulic Diagrams

Thermodynamics: Sankey Diagrams

Famous Sankey Diagram

Circuits

Exploded View

