Human Motion and Control Laboratory [hmc.csuohio.edu]
Cleveland State University
March 4, 2014
Estimated
|
Unknown
|
\[ \mathbf{m}(t) = \mathbf{m}_0(\varphi) + \mathbf{K}(\varphi) [\mathbf{s}_0(\varphi) - \mathbf{s}(t)] \\ \] \[ \mathbf{m}(t) = \mathbf{m}_0(\varphi) + \mathbf{K}(\varphi) \mathbf{s}_0(\varphi) - \mathbf{K}(\varphi) \mathbf{s}(t) \\ \]
\[ \mathbf{m}(t) = \mathbf{m}^*(\varphi) - \mathbf{K}(\varphi) \mathbf{s}(t) \]
Assume that a lower limb exoskeleton can sense relative orientation and rate of the right and left planar ankle, knee, and hip angles.
\(\mathbf{s}(t) = \begin{bmatrix} s_1 & \dot{s}_1 & \ldots & s_q & \dot{s}_q \end{bmatrix} \) where \(q=6\)
Assume that the exoskeleton can generate planar ankle, knee, and hip joint torques.
\(\mathbf{m}(t) = \begin{bmatrix}m_1 & \ldots & m_q \end{bmatrix} \) where \(q=6\)
\( \mathbf{K}(\varphi) = \begin{bmatrix} k(\varphi)_{s_1} & k(\varphi)_{\dot{s_1}} & 0 & 0 & 0 & \ldots & 0\\ 0 & 0 & k(\varphi)_{s_2} & k(\varphi)_{\dot{s_2}} & 0 & \ldots & \vdots\\ 0 & 0 & 0 & 0 & \ddots & 0 & 0\\ 0 & 0 & 0 & \ldots & 0 & k(\varphi)_{s_q} & k(\varphi)_{\dot{s}_q} \\ \end{bmatrix} \)
With \(n\) time samples in each gait cycle and \(m\) steps there are \(mnq\) equations and which can be used to solve for the \(nq(2q+1)\) unknowns: \(\mathbf{m}^*(\varphi)\) and \(\mathbf{K}(\varphi)\). This is a classic overdetermined system of linear equations that can be solved with linear least squares.
\[\mathbf{A}\mathbf{x}=\mathbf{b}\]
\[\mathbf{x}=(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{b}\]
Tonight at 6pm
Chemistry Computer Lab in the Whitby building on the 2nd floor. Next to ASEC (previous location).
https://github.com/pydy/pydy-tutorial-pycon-2014
/